291 research outputs found

    A double scale methodology to investigate flow in karst fractured media via numerical analysis. The Cassino plain case study (Central Apennine, Italy)

    Get PDF
    A methodology to evaluate the hydraulic conductivity of the karstmedia at a regional scale has been proposed, combining pumping tests and the hydrostructural approach, evaluating the hydraulic conductivity of fractured rocks at the block scale. Obtaining hydraulic conductivity values, calibrated at a regional scale, a numerical flow model of the Cassino area has been developed, to validate the methodology and investigate the ambiguity, related to a nonunique hydrogeological conceptual model. The Cassino plain is an intermontane basin with outstanding groundwater resources.The plain is surrounded by karst hydrostructures that feed the Gari Springs and Peccia Springs. Since the 1970s, the study area was the object of detailed investigations with an exceptional density of water-wells and piezometers, representing one of the most important karst study-sites in central-southern Italy. Application of the proposed methodology investigates the hydraulic conductivity tensor at local and regional scales, reawakening geological and hydrogeological issues of a crucial area and tackling the limits of the continuum modelling in karst medi

    The geology and hydrogeology of the Cassino plain (central Apennines, Italy). Redefining the regional groundwater balance

    Get PDF
    Cassino plain is a Quaternary intermontane basin of the central-southern Apennines, Italy. The plain has outstanding groundwater resources (total discharge of 23,000 L/s), thanks to the huge karst basins that surround the area. The area has been involved in many hydrogeological interests since the 1970s due to the economic importance and construction of the Western Campania Aqueduct for the water supply of Naples city and its hinterland. Despite its importance, the area lacks a common accepted hydrogeological conceptual model due to the complex geological setting. Two contrasting conceptual models already exist in the literature, with the first model based on a quantitative hydrogeological approach and the second on fieldwork. Through a literature analysis and further detailed field surveys, a new conceptual model is presented, acknowledging the thrust tectonics of the Apennine chain. The model unveils the most important hydrogeological issues of the area, serving as a useful tool for groundwater management, as well as for considering the changing anthropic and climate scenarios. In particular, the study redefines the hydrostructure extents and the groundwater flowpaths, characterizing the main water resources as Gari and Peccia springs

    Implementing Mindfulness in General Life and Organizations. Validation of the Time Flow Mindfulness Questionnaire for Effective Health Management

    Get PDF
    The primary purpose of the current research was to examine the psychometric properties of the Time Flow Mindfulness Questionnaire (TFMQ), a new self-report scale designed to measure cognitive, emotional, bodily, context-related, and action-related distracting inputs experienced by the mind during three different time windows of mindfulness practice (preliminary moments, during-the-practice, after-the-practice). The 42-item scale assesses the following second-order and first-order factors: Practice (preliminary, during), Benefits (short-term, long-term) and Benefits at work. Three studies were conducted. The first study assessed the factor structure and internal consistency on a sample of 141 mindfulness practitioners. Using a two-wave lagged design on a different sample of 46 trainees attending MBSR courses, the second study examined concurrent validity by performing correlations between the TFMQ and Five Facets Mindfulness Questionnaire (FFMQ). The third study (same sample as study 1) examined criterion validity by testing a structural equation model wherein mindfulness practice predicts job burnout, both directly and indirectly through mindfulness benefits at work. All studies relied on anonymous surveys. Our findings suggest that the TFMQ: a) has a factor structure consistent with the hypothesized conceptual dimensions; b) has good concurrent validity as demonstrated by significant correlations with the FFMQ dimensions; and c) consists of mindfulness dimensions that predict job burnout in organizations (i.e., criterion validity). The TFMQ is a valid and reliable mindfulness measure that may help a) practitioners gain awareness of different types of inputs that potentially distract the mind and mindfulness beneficial consequences, and b) organizations implement mindfulness in work-settings

    Hydrogeological insights and modelling for sustainable use of a stressed carbonate aquifer in the Mediterranean area. From passive withdrawals to active management

    Get PDF
    Study area: Venafro Mts., southern-central Italy, Mediterranean basin. Study focus: Via a collection of geological and hydrogeological data, a flow conceptual model of a carbonate aquifer has been coupled with a numerical model via MODFLOW code and Unsaturated Zone Flow (UZF) package in steady state and transient conditions. Simulation is further implemented with different management scenarios, for facing possible emergencies due to recharge decrease, also simulating a drastic water abstraction cut-off. New hydrological insights for the region: Carbonate fractured aquifers are a strategic water resource in the whole Mediterranean area, supplying major metropolitan areas. Despite these huge extensions, such groundwater systems are threatened by increasing drought occurrence and significant human water abstraction. A characterization of a carbonate fractured aquifer (370 km2) located in central-southern Italy has been performed. Venafro Mts. Aquifer (VMA) hosts a strategic resource for the Western Campania Waterworks (WCW) that supplies the populous metropolitan area of Naples, with 3.8 million inhabitants. VMA shows a slow response, with recovery time estimated at the decennial scale, testifying its limited resilience to natural and human pressures. A shift is proposed from passive management to a more comprehensive concept of smart-water monitoring, applied not only to waterworks and pipelines, but also to groundwater resources in the environment

    Exploring copepod distribution patterns at three nested spatial scales in a spring system. Habitat partitioning and potential for hydrological bioindication

    Get PDF
    In groundwater-fed springs, habitat characteristics are primarily determined by a complex combination of geomorphic features and physico-chemical parameters, while species assemblages are even more intricate. Springs host species either inhabiting the spring mouth, or colonizing spring habitats from the surface or from the aquifers which feed the springs. Groundwater species living in springs have been claimed as good candidates for identifying dual aquifer flowpaths or changes in groundwater pathways before reaching the spring outlets. However, the reliability of spring species as hydrological biotracers has not been widely investigated so far. Our study was aimed at analysing a large karstic spring system at three nested spatial scales in order: i) to assess, at whole spring system scale, the presence of a groundwater divide separating two aquifers feeding two spring units within a single spring system, by combining isotope analyses, physico-chemistry, and copepod distribution patterns; ii) to test, at vertical spring system scale, the effectiveness of copepods in discriminating surface and subsurface habitat patches within the complex mosaic spring environment; iii) to explore, at local spring unit level, the relative role of hydrochemistry and sediment texture as describers of copepod distribution among microhabitats. The results obtained demonstrated the presence of a hierarchical spatial structure, interestingly reflected in significant differences in assemblage compositions. Copepod assemblages differed between the two contiguous spring units, which were clearly characterized by their hydrochemistry and by significant differences in the groundwater flowpaths and recharge areas, as derived by the isotope analyses. The biological results suggested that stygobiotic species seem to be related to the origin of groundwater, suggesting their potential role as hydrological biotracers. At vertical scale, assemblage composition in surface and subsurface habitats was significantly different, both between spring units and among microhabitats, supporting strong habitat preferences of copepod species. At the smaller local scale, the response to habitat patchiness of subsurface copepod assemblages resulted in distribution patterns primarily defined by sediment texture, while the sensitivity to differences in hydrochemistry was negligible

    Groundwater recharge distribution due to snow cover in shortage conditions (2019–22) on the Gran Sasso carbonate aquifer (Central Italy)

    Get PDF
    Aquifer recharge by the snowpack is relevant to be assessed to evaluate groundwater availability in mountainous karst regions. The recharge due to snowpack in the Gran Sasso aquifer has previously been estimated through an empirical approach using elevation gradients. To validate and quantify the coverage and persistence of the snowpack over time through an objective method, satellite images have been analysed. The Campo Imperatore plain, the endorheic basin acting as a preferential recharge area of the aquifer, plays an important role, both for the snow cover and also for the infiltration and recharge of springs. The identification of recharge areas has been validated by the stable isotope approach with the assessment of computed isotope recharge elevation based on the values and oscillations of the delta O-18 isotope recorded at the springs. The main findings confirm the high infiltration rate of Campo Imperatore plain and its direct influence on snow contribution to aquifer recharge. The extension of snow coverage out of this plain has a minor influence to recharge, highlighting that the main drivers for infiltration rate are fractured networks and karstic forms more than snow coverage on carbonate outcrops

    A Drought Alert system based on seasonal forecasts

    Get PDF
    Water resources are under stress in many areas of the world, because of a combination of climatic and anthropogenic factors. The Mediterranean area is one of the regions mostly vulnerable to climate alterations. These alterations have direct impacts on the surface water balance and groundwater recharge, and thus changes in the reservoir inputs and the management of water utilities (WUs) are severe challenges for water resources in the future. However, WUs management routines scarcely consider climate information and are based on the stationarity assumption, working on weekly or daily time scale. The use of seasonal forecasts for guiding a strategic planning of the resources has been increasing across several climate-sensitive sectors, including water management and energy. This is due to the fact that it is generally preferred to focus on the upcoming season rather than taking decisions on the basis of a 100-year climate projection. The project EUPORIAS promoted the use of climate information for decision support by involving both providers and potential users of seasonal data. It was demonstrated that seasonal forecasts may give important contributions in the fields of drought-risk assessment and mid-term reservoir management. This study aims at providing some insights in using seasonal forecasts to derive supporting information for water management decision-makers based on drought assessment. Indeed, the exploitation of climate information as precipitation in a mid-term scale, as the seasonal scale, allows for understanding the possible shifts in water resource availability. In this study we describe some results obtained for a case study in Greece

    Sensitivity of cloud radiative forcing to changes of microphysical parameters measured by the CLOUDS mission

    Get PDF
    CLOUDS (a Cloud and Radiation monitoring satellite) is a study for a satellite mission designed to provide the gross vertical profile, the internal structure, the radiative and the imaging features of clouds. This subject is addressed by several missions designed for process study intent. CLOUDS, instead, is designed for providing data of routine use in long-term NumericalWeather Prediction (NWP) and General Circulation Model (GCM). User requirements have been collected from various sources, and instruments concepts derived to meet those requirements. However, to establish the sensitivity of a GCM to the targeted parameters and confirm the soundness of the specified requirements (mainly accuracy and vertical resolution), special effort had to be placed. The present paper offers a rather complete assessment of the range of usefulness that CLOUDS measurements may have on the radiative calculation. To this purpose, the cloud forcing was computed as a function of cloud parameters by using a radiative model that has been applied in the GCM of the Laboratory for Atmospheres at the NASA Goddard Space Flight Center. The results show that, in most cases, the model response to the addressed cloud parameters is good if the error is within the specified limit. This is better demonstrated for relatively large particle sizes, for ice better than for liquid water, for low optical thickness and for low cloud cover. The model, however, suggests that more stringent requirements would be appropriate when small particles are considered

    An innovative approach for detecting the effect of climate change on the hydrometeorological extremes

    Get PDF
    In a future climate, extreme hydrometeorological events are expected to increase in magnitude and frequency. However, changes in the extreme event characteristics on a relatively short time-scale could be attributed to either climate fluctuations or the effect of anthropogenic climate change. How to distinguish between these two cases is still a field of research. This study presents a novel technique to detect systematic changes in the hydrometeorological extremes in Africa, as part of the eXtreme Climate Facilities project (XCF) lead by the African Risk Capacity (ARC). In a first step, we introduce the Extreme Climate Index (ECI), an objective, multi-hazard index constructed to identify intense droughts, storms, and heat weaves. Subsequently, a new method that estimates the probability of anthropogenic climate change to be the cause of the changes in the hydrometeorological extremes is introduced. This technique is applied to the case of XCF, which is aimed at designing a new financial tool to mitigate the anthropogenic effect on extremes. The method is calibrated with synthetic datasets as well as with the results of the pre-industrial experiment of the CMIP5 database. At the same time, this analysis explores the extent to which such a technique is generally applicable to the identification of systematic changes in the hydrometeorological extremes
    • …
    corecore